STEREOSTRUCTURAL REVISION OF AURICULARIC ACID SYNTHESIS OF 4-EPI-AURICULARIC ACID

A. Abad*, C. Agulló, M. Arnó*, and R.J. Zaragozá

Departamento de Química Orgánica, Universidad de Valencia Dr. Moliner 50, 46100 Burjasot, Valencia, Spain.

Summary: Cleistanth-13,15-dien-18-oic acid (1) has been synthesised from methyl 13-keto-podocarp-8(14)en-18-oate (3). It is demonstrated that auricularic acid is an epimer at C-4 of 1, so it must be reformulated as cleistanth-13,15-dien-19-oic acid (2).

Auricularic acid is an spasmolytic cleistanthane type diterpenoid with a completely reduced C-ring. It and its 7-hydroxy derivative were isolated from *Pogostemon auricularis* Hassk by Prakash and co-workers^{1a,b} in 1986.

The structure 1 for auricularic acid was proposed on the basis of degradative and spectroscopic studies. We have prepared this compound from enone 3^2 by a method that does not disturb the stereochemistry of ring A (see Scheme) but have found that its properties differ from those reported by Prakash for the natural product. The differences observed in the 13 C n.m.r. spectra of both compounds are specially significant (see Table).

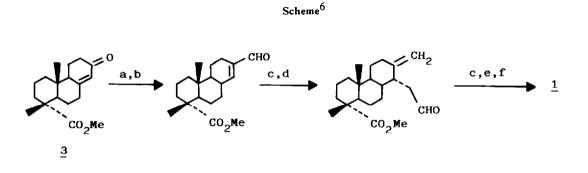

Carbo	n õc AA	δc 1 ^b	Proton	^с бн АА ^а	бн 1 ^b	
1	38.0 ^d	38.4	H-14		2.77(dd,9.2,	
2	19.5	18.0		4.6)	4.3)	17
3	39.7	36.9				20 19 Me 11
4	43.9	47.35	H-15		6.01(ddd,17.5,	$R^2 = 11^{12}$
5	56.4	49.35		10.3,9.2)	9.4,9.2)	2 R 13
6	23.2	24.2		c	5 01 (13 0 4	110 9 18
7	32.7	31.2	H - 16	5.02(dd,10.3,		1 1 5
8	40.9	40.6		1.7)	1.8)	3 5 5 7 B CH
9	48,9	49.1		5 94(1) 15 9	5 00/11 17 F	R ¹ 16 ⁰¹²
10	37.7	36.4	H-16'		5.02(dd,17.5, 1.8)	18
11	27.4 31.5 ^d	26.7		1.7)	1.8)	
12		31.6	11 1 7	4 CE	A 60(4 0 0)	
13	152.2	152.4	H-17	4.65	4.62(d,2.2)	$\underline{1}$: \mathbf{R}^1 = COOH, \mathbf{R}^2 = Me
14	54.7	54.7	11 1 71	4 67	4.52(m)	
15	137.7	137.7	H-17'	4.57	4.02(m)	$2: R^1 = Me$, $R^2 = COOH$
16	115.7	115.9	N- 4	1 22(-)	1.15(s)	$z \cdot n = me$, $n = coord$
17 Ma A	106.5	106.4	Me-4	1.22(s)	1,13(8)	
Me-4	29.0	16.6	Me-10	0.71(s)	0.82(s)	
Me-10		14.15	me-10	0./1(5)	0.02(3)	
COOH	184.0	185.7				

Table. ¹³C and ¹H Chemical Shifts of Auricularic Acid (AA) and 1.

^aThese data have been taken from reference 1. ^bIn CDCl₃. ^cJ-Values (Hz) are given in parentheses. ^dWe have reversed the signals previously attributed to C-1 and C-12 since we believe the chemical shift assignments for these atoms were incorrect (see ref 5).

4564

Thus, comparison of the ¹³C chemical shifts reveals that the greatest difference observed for auricularic acid with respect to 1 lies in the values for C-5 and Me-4 which are shifted downfield by 7 and 12.4 ppm, respectively.³ These differences are sufficiently characteristic to demonstrate that auricularic acid is an epimer at C-4 of structure 1, so it must be re-formulated as cleistanth-13,15-dien-19-oic acid and stereochemically represented as 2.

a) $Ph_3P=CHOCH_3$, THF, then NaH, DMF. b) HCOOH, DMF. c) NaBH₄, CH₃OH. d) Hg(OAc)₂, CH₃CH₂OCH=CH₂, 195 ⁰C. e) o-NO₂PhSeCN, Bu₃P, THF, then H₂O₂. f) NaSePh, THF, HMPT.

Acknowledgements: Finaltial support from CICYT (Grant N^2 PB86-0578) is gratefully acknowledged. We also thank Dr D. Craig for manuscript revision.

References and notes

- (a) O. Prakash, R. Roy, S. Agarwal, F.A. Hussaini, and A. Shoeb, *Tetrahedron Lett.*, 1987, 28, 685; (b)
 F.A. Hussaini, S. Agarwal, R. Roy, O. Prakash, and A. Shoeb, *J. Nat. Prod.*, 1988, 51, 212.
- 2 Prepared from abietic acid as described in: A. Abad, M. Arnó, L.R. Domingo, and R.J. Zaragozá, Tetrahedron, 1985, 41, 4937.
- 3 Previous studies on ¹³C n.m.r. spectra of various abietane and podocarpane type diterpenoids⁴ have demonstrated that the presence of an equatorial carboxyl group at C-4 results in shielding of the B-carbon atoms (specially C-5 and C-19) with respect to their axial counterpart. Thus, when the values for the compounds having an axial carboxyl group at C-4 are compared with that having the same group equatorial, the C-5 appears at 53-56 instead of 45-50 ppm and the methyls linked to C-4 at 28-29 instead of 16-18 ppm.
- 4 (a) T. Nishida, I. Wahlberg, and C.R. Enzell, Org. Magn. Reson., 1977, 9, 203; (b) B. Delmond, M. Taran, and J. Valade, Org. Magn. Reson., 1981, 17, 207; (c) S. Valverde, J.C. Lopez, R.M. Rabanal, and J. Escudero, Tetrahedron, 1986, 42, 573; (d) A.C. Pinto, D.H.T. Zocher, P.P.S. Queiroz, and A. Kelecom, Phytochemistry, 1987, 26, 2409.
- 5 (a) T.S. Kaufman, M.P. Mischne, M. Gonzalez-Sierra, and E.A. Ruveda, Can. J. Chem., 1987, 65, 2024;
 (b) R.W. Dunlop, Phytochemistry, 1985, 24, 977.

6 The details of this transformation shall be published elsewhere.

(Received in UK 4 July 1989)